

LM Guide

Separate Type

Separate Type LM Guide

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off.

Because of the angular contact structure where two rows of balls rolling on the LM rail each contact the raceway at 45°, the same load can be applied in four directions (radial, reverse-radial and lateral directions) if a set of model HR components is mounted on the same plane (i.e., when two LM rails are combined with LM blocks on the same plane). Furthermore, since the sectional height is low, a compact and stable linear guide mechanism is achieved.

This structure makes clearance adjustment relatively easy, and is highly capable of absorbing a mounting error.

Easy installation

The clearance of model HR is easier to adjust and thus achieves better accuracy than Cross Roller Guides.

Self-adjustment capability

Even if the parallelism or the level between the two rails is poorly established, the self-adjustment capability through Face-to-Face configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed and smooth linear motion to be achieved even under a preload.

4-way equal-load type

When the two rails are mounted in parallel, each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse-radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

Sectional dimensions approximate to that of Cross Roller Guides

Since model HR is an infinite motion type whose retainer plate does not move, it is not associated with cage displacement that occurs with Cross Roller Guides. In addition, the sectional shape of model HR is approximate to that of Cross Roller Guides, and therefore, its components are interchangeable with that of Cross Roller Guides.

Stainless steel type also available

A special type whose LM block, LM rail and balls are made of stainless steel is also available.

1

HR Outline Model HR - Product Overview

With a thin, highly rigid and space saving structure, model HR is interchangeable with the Cross Roller Guide.

۲

٢

A stainless steel type is also available as standard.

Major applications XYZ axes of electric discharge machine / precision table / XZ axes of NC lathe /

assembly robot / conveyance system / machining center /

 \oplus

۲

⊕ ♦ ⊕

wire-cutting electric discharge machine / tool changer / woodworking machine

 \oplus

۲

 \oplus

٢

Model HR-T Ultra-heavy Load Type

It has the same sectional shape as model HR, but has a greater overall LM block length (L) and a higher load rating.

The LM blocks can be mounted from the top and the bottom.

*1: Dimensional table for model HR Model HR → pages 11-12

Rated Loads in All Directions

When installed, one set of model HR is capable of receiving loads in all four directions: radial, reverse-radial and lateral directions.

The basic load ratings of an installed set of model HR are equal in all four directions (radial, reverse-radial and lateral directions). The basic load ratings in the dimensional table*1 for model HR indicate the values in the radial direction per LM block as shown in the figure on the right.

When the LM block of model HR receives loads in the reverse-radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

 $\mathbf{P}_{\mathrm{E}} = \mathbf{P}_{\mathrm{R}}(\mathbf{P}_{\mathrm{L}}) + \frac{1}{2}\mathbf{P}_{\mathrm{T}}$

where

P_E :Equivalent load (N) ·Radial direction

·Lateral direction

·Reverse-radial direction

- P_R :Radial load (N)
- PL :Reverse-radial load (N)
- PT :Lateral load (N)

3

Service life

The service life of an LM Guide is subject to variations even under the same operational conditions. Therefore, it is necessary to use the rated life defined below as a reference value for obtaining the service life of the LM Guide.

Rated life

The rated life means the total travel distance that 90% of a group of units of the same LM Guide model can achieve without flaking (scale-like exfoliation on the metal surface) after individually running under the same conditions.

Service life time

Once the rated life (L) has been obtained, the service life time can be obtained using the equation on the right if the stroke length and the number of reciprocations are constant.

f_H : Hardness factor

To ensure the achievement of the optimum load capacity of the LM Guide, the raceway hardness must be between 58 and 64 HRC. At hardness below this range, the basic dynamic and static load ratings decrease. Therefore, the rating values must be multiplied by the respective hardness factors (f_{in}). Since the LM Guide has sufficient hardness, the f_{in} value for the LM Guide

is normally 1.0 unless otherwise specified.

fc : Contact factor

When multiple LM blocks are used in close contact with each other, it is difficult to achieve uniform load distribution due to moment loads and mounting-surface accuracy. When using multiple blocks in close contact with each other, multiply the basic load rating (C or C_{\circ}) by the corresponding contact factor indicated in Table 1.

Note: When uneven load distribution is expected in a large machine, consider using a contac factor from Table 1.

Table 1 Contact Factor (fc)

Number of blocks used in close contact	Contact factor fc
2	0.81
3	0.72
4	0.66
5	0.61
6 or more	0.6
Normal use	1

n1 : No. of reciprocations per min (min-1)

Since the service temperature of Caged Ball LM Guides is normally 80°C or below, the $f_{\rm T}$ value is 1.0.

fw: Load factor

In general, reciprocating machines tend to produce vibrations or impact during operation. It is especially difficult to accurately determine all vibrations generated during high-speed operation and impacts produced each time the machine starts and stops. Therefore, where the effects of speed and vibration are estimated to be significant, divide the basic dynamic load rating (C) by a load factor selected from Table 2, which contains empirically obtained data.

Table 2 Load Factor (fw)

Vibration/impact	Speed (V)	fw
Faint	Very slow V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Moderate	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	Fast V>2m/s	2 to 3.5

*1: Basic dynamic load rating (C)

It refers to a load with a constant magnitude and direction under which the rated life (L) of a group of identical LM Guide units independently operating is 50 km.

Design the clearance adjustment screw so that it presses the center of the side face of the LM block.

Using a clearance screw Normally, press the LM block with an adjusting screw.

Using tapered gibs When high accuracy and high rigidity are required, use tapered gibs 1) and 2).

Using an eccentric pin

THK manufactures a type whose clearances are adjusted with an eccentric pin.

HR OUTLINE Model HR - Product Overview

Accuracy Standard

The accuracy of model HR is specified in terms of running parallelism (⁻¹), dimensional tolerance for height and width, and height and width difference between a pair (^{-2, -3}) when two or more LM blocks are used on one rail or when two or more rails are mounted on the same plane.

					Unit: mm		
Accuracy standard	Normal grade	High-accuracy grade	Precision grade	Super-precision grade	Ultra-super precision grade		
Item	No symbol	Н	Р	SP	UP		
Dimensional tolerance for height M	±0.1	±0.05	±0.025	±0.015	±0.01		
Difference in height M (see note 1)	0.03	0.02	0.01	0.005	0.003		
Dimensional tolerance for total width Wo	±).1	±0.05				
Difference in total width Wo (see note 2)	0.03	0.015	0.01	0.005	0.003		
Running parallelism of surface $\ensuremath{\mathbb{B}}$ against surface $\ensuremath{\mathbb{A}}$		ΔC (as sh	own in the figu	ure below)	•		

Note 1: Difference in height M applies to a set of model HR components used on the same plane.

Note 2: Difference in total width Wo applies to LM blocks used in combination on one LM rail.

Note 3: Dimensional tolerance and difference in total width W₀ for precision and higher grades apply only to the master-rail side among a set of model HR components. The master rail is imprinted with "KB" following a serial number.

*1: Running parallelism

It refers to the parallelism error between the LM block and the LM rail datum plane when the LM block travels the whole length of the LM rail with the LM rail secured on the reference datum plane using bolts.

*2: Difference in height M

It indicates the difference between the minimum and maximum values of height (M) of each of the LM blocks used on the same plane in combination.

*3: Difference in width W₂

It indicates the difference between the minimum and maximum values of the width (W₂) between each of the LM blocks, mounted on one LM rail in combination, and the LM rail.

Shoulder Height of the Mounting Base and the Corner Radius

Normally, the mounting base for the LM rail and the LM block has a datum plane on the side face of the shoulder of the base in order to allow easy installation and highly accurate positioning.

The corner of the mounting shoulder must be machined to have a recess, or machined to be smaller than the corner radius "r," to prevent interference with the chamfer of the LM rail or the LM block.

			Unit: mm
Model No.	Corner radius r (max)	Shoulder height for the LM rail H1	Shoulder height for the LM block $$H_{\rm 2}$$
918	0.3	5	6
1123	0.5	6	7
1530	0.5	8	10
2042	0.5	11	15
2555	1	13	18
3065	1	16	20
3575	1	18	26
4085	1.5	21	30
50105	1.5	26	32
60125	1.5	31	40

Error Allowance in the Parallelism Between Two Rails

The following table shows error allowances in parallelism (P) between two rails that will not affect the service life in normal operation.

			Unit:µm
Model No.	Clearance C0	Clearance C1	Normal clearance
918	—	7	10
1123	—	8	14
1530	—	12	18
2042	14	15	20
2555	20	24	35
3065	22	26	38
3575	24	28	42
4085	30	35	50
50105	38	42	55
60125	50	55	65

Error Allowance in Vertical Level Between Two Rails

The values in the table each indicate the error allowances in vertical level between two rails per 500 mm of the axis-to-axis distance, and are proportional to the axis-to-axis distances.

Unit:µm

Model No.	Clearance C0	Clearance C1	Normal clearance
918	—	15	45
1123	—	20	50
1530	—	60	90
2042	50	60	90
2555	85	100	150
3065	95	110	165
3575	100	120	175
4085	120	150	210
50105	140	175	245
60125	170	200	280

Comparison of Model Numbers with Cross Roller Guides

Each type of LM Guide model HR has sectional dimensions approximate to that of the corresponding Cross Roller Guide model.

HR OUTLINE Model HR - Product Overview

Models HR/HR-T/HR-M/HR-TM Dimensional Table for Models HR/HR-T/HR-M/HR-TM

Models HR918, 918M

	E	External d	imension	S		LM block dimensions									
Model No.	Height M	Width W	Wo	Length L	B1	С	н	S	h2	L1	т	К	Greasing hole d	D1	
HR 918 HR 918M	8.5	11.4	18	45	5.5	15	_	M3	_	25	7.5	8	1.5	_	
HR 1123 HR 1123M	11	13.7	23	52	7	15	2.55	M3	3	30	9.5	10	2	5	
HR 1530 HR 1530M	15	19.2	30	69	10	20	3.3	M4	3.5	40	13	14	2	6.5	
HR 2042 HR 2042M	20	26.3	42	91.6	13	35	5.3	M6	5.5	56.6	17.5	19	3	10	
HR 2042T HR 2042TM	20	26.3	42	110.7	13	50	5.3	M6	5.5	75.7	17.5	19	3	10	
HR 2555 HR 2555M	25	33.3	55	121	16	45	6.8	M8	7	80	22.5	24	3	11	
HR 2555T HR 2555TM	25	33.3	55	146.6	16	72	6.8	M8	7	105.4	22.5	24	3	11	

Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.

Example of model number coding

No. of LM blocks used on the same rail 2 Model number 3 Dust prevention accessory symbol (see page 17) 4 LM block is made of stainless steel 5 LM rail length (in mm) 6 Accuracy symbol (see page 6) 7 LM rail is made of stainless steel

Note) One set of model HR means a combination of two LM rails and LM blocks used on the same plane.

Models HR1123 to 2555M/T/TM

													Unit: mm
		LM rai	dimensio	ns		Basic load rating		Static permissible moment kN-m*				Mass	
Width			Height	Pitch		С	C ₀	N	1.4	Мв		LM block	LM rail
W1	W_4	А	M1	F	d₁×d₂×h	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	kg	kg/m
6.7	3.5	8.7	6.5	25	3×5.5×3	1.57	3.04	0.0229	0.17	0.0229	0.17	0.01	0.3
9.5	5	11.6	8	40	3.5×6×4.5	2.35	4.31	0.0414	0.272	0.0414	0.272	0.03	0.5
10.7	6	13.5	11	60	3.5×6×4.5	4.31	7.65	0.0982	0.641	0.0982	0.641	0.08	1
15.6	8	19.5	14.5	60	6×9.5×8.5	9.9	17.2	0.308	1.91	0.308	1.91	0.13	1.8
15.6	8	19.5	14.5	60	6×9.5×8.5	13.6	22.9	0.53	2.99	0.53	2.99	0.26	1.8
22	10	27	18	80	9×14×12	18.6	30.5	0.783	4.41	0.783	4.41	0.43	3.2
22	10	27	18	80	9×14×12	25.1	40.8	1.33	6.95	1.33	6.95	0.5	3.2

Note A moment in the direction Mo can be received if two rails are used in parallel. However, since it depends on the distance between the two rails, the moment in the direction $M_{\rm c}$ is omitted here.

Static permissible moment*: Static permissible moment value with one set of model HR

Models HR/HR-T/HR-M/HR-TM Dimensional Table for Models HR/HR-T/HR-M/HR-TM

	E	External d	limension	s	LM block dimensions									
Model No.	Height	Width W	Wo	Length	B,	C	н	S	h₂		т	к	Greasing hole	Di
			•••	-	D.	Ŭ		Ũ	112	<u> </u>			u	51
HR 3065	20	40.2	6E	145	10	50	0.6	M10	0	90	07 E	20	4	14
HR 3065T	30	40.5	05	173.5	19	80) 0.0	0.0		118.5	27.5	29	4	14
HR 3575	25	44.0	75	154.8	01 5	60	10.5	M10	10	103.8	20	24	4	10
HR 3575T	35	44.9	/5	182.5	21.5	92.5	10.5	0.5 M12	12	131.5	32	34	4	18
HR 4085	40	EO 4	05	177.8	04	70	10.5	N44 4	10	120.8	26	20	4	20
HR 4085T	40	50.4	65	215.9	24	110	12.5	10114	13	158.9	30	30	4	20
HR 50105	50	60.4	105	227	20	85	145	MIC	15 5	150	45	40	F	00
HR 50105T	50	03.4	105	274.5	30	130	14.5	IVITO	15.5	197.5	45	40	5	23
HR 60125	60	74.4	125	329	35	160	18	M20	18	236	55	58	5	26

Example of model number coding

2 HR4085T UU +1500L P

No. of LM blocks used on the same rail Model number Dust prevention accessory symbol (see page 17) ALM rail length (in mm) Accuracy symbol (see page 6)

Note One set of model HR means a combination of two LM rails and LM blocks used on the same plane.

Unit: mr													
		LM rail	dimensio	ins		Basic loa	ad rating	Static permissible moment kN-m*				Mass	
Width		Height Pitch				С	C ₀	N	1.	Мв		LM block	LM rail
W_1	W_4	А	M1	F	d₁Xd₂Xh	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	kg	kg/m
05	10	04.5	00.5	00	0.44.44.0	24.2	38.6	1.11	6.72	1.11	6.72	0.7	4.0
25	12	31.5	22.5	80	9X14X12	32.1	51.6	1.89	10.4	1.89	10.4	0.9	4.6
00 F	145	07	00	105		30	47.8	1.53	8.84	1.53	8.84	1.05	0.4
30.5	14.5	37	26	105	11×17.5×14	40.2	63.6	2.59	13.5	2.59	13.5	1.4	6.4
05	10	40 F	00	100	141/001/17	44.1	68.6	2.64	14.4	2.64	14.4	1.53	0
35	16	42.5	29	120	14X20X17	59.5	91.7	4.48	23	4.48	23	1.7	8
40	00	F 4 F	07	150	103/003/00	70.7	107	5.15	28.9	5.15	28.9	3.06	10.1
42	20	51.5	37	150	18X26X22	96	143	8.74	45.7	8.74	45.7	3.5	12.1
51	25	65	45	180	22×32×25	141	206	14.3	79.6	14.3	79.6	7.5	19.3

F

Note A moment in the direction Mc can be received if two rails are used in parallel. However, since it depends on the distance between the two rails, the moment in the direction $M_{\mbox{\tiny C}}$ is omitted here.

Static permissible moment*: Static permissible moment value with one set of model HR

HR

Standard Length and Maximum Length of the LM Rail

The table below shows the standard LM rail lengths and the maximum lengths of model HR variations. If the maximum length of the desired LM rail exceeds them, connected rails will be used. Contact THK for details.

For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus adversely affecting accuracy.

Standard Length and Maximum Length of the LM Rail for Model HR

Model No.	HR 918	HR 1123	HR 1530	HR 2042	HR 2555	HR 3065	HR 3575	HR 4085	HR 50105	HR 60125
	70	110	160	220	280	280	570	780	1270	1530
	120	230	280	280	440	440	885	1020	1570	1890
۵) م	220	310	340	340	600	600	1200	1260	2020	2250
h (L	295	390	460	460	760	760	1620	1500	2620	2610
dare			580	640	1000	1000	2040	1980		
le					1240	1240	2460	2580		
S										
Standard pitch F	25	40	60	60	80	80	105	120	150	180
G	10	15	20	20	20	20	22.5	30	35	45
Max length	300	500	1600	2200	2600	3000	3000	3000	3000	3000

Unit: mm

Note 1: The maximum length varies with accuracy grades. Contact THK for details.

Note 2: If connected rails are not allowed and a greater length than the maximum values above is required, contact THK.

HR OPTIONS Options

For model HR, dust-prevention accessories are available. Make a selection according to the application and the installation site.

Dust Prevention Accessories

17

When foreign matter enters an LM system, it will cause abnormal wear or shorten the service life. It is necessary to prevent foreign matter from entering the system. Therefore, when possible entrance of foreign matter is predicted, it is important to select an effective sealing device or dust-prevention device that meets the working conditions.

Lubrication

The LM block has a greasing hole in the center of its top face. To provide lubrication through this hole, the table must be machined to also have a greasing hole as shown in the figure on the right and attach a grease nipple or the like. When using oil lubrication, it is necessary to identify the lubrication route. Contact THK for details.

Dedicated Mounting Bolt

Normally, when mounting the LM block with which to adjust a clearance, use the tapped hole provided on the LM block to secure it as shown in Fig. 1.

In this case, the hole must be machined so that its diameters d_1 and D_1 are larger by the adjustment allowance.

If it is inevitable to use the mounting method as indicated by Fig. 2 for a structural reason. The dedicated mounting bolt as shown in Fig. 3 is required for securing the LM block. Be sure to specify that the dedicated mounting bolt is required when ordering the LM Guide.

Unit: mn								Unit: mm
	Model No.	S	d	D	Н	L	l	Supported model
	B 3	M3	2.4	5.5	3	17	5	HR 1530
	B 5	M5	4.1	8.5	5	22	7	HR 2042
	B 6	M6	4.9	10	6	28	9	HR 2555
	B 8	M8	6.6	13	8	34	12	HR 3065
	B10	M10	8.3	16	10	39	15	HR 3575
	B12	M12	10.1	18	12	45	18	HR 4085
	B14	M14	11.8	21	14	55	21	HR 50105
	B16	M16	13.8	24	16	66	24	HR 60125

Dedicated	Mounting	Bolt
Douioutou	wounding	DOIL

