

NEW Caged Roller LM Guide

Optimum for large machines that require high rigidity Ultra-high rigidity Heavy Load A large roller guide model is added to the lineup

SRG85,100

Caged Roller LM Guide SRG85,100

Model SRG is an ultra-high rigidity Roller Guide that uses roller cages to prevent rollers from skewing, thus allowing low-friction, smooth motion and achieve long-term maintenance-free operation.

Features

Ultra-high Rigidity

A higher rigidity is achieved by using highly rigid rollers as the rolling elements and having the overall roller length (L) more than 1.5 times greater than the roller diameter (Dw).

4-way Equal Load

Since each row of rollers is arranged at a contact angle of 45° so that the LM block receives an equal load rating in all four directions (radial, reverse radial and lateral directions), high rigidity is ensured in all directions.

Smooth Motion through Skewing Prevention

The roller cage allows rollers to form an evenly spaced line while recirculating, thus preventing the rollers from skewing (tilt of rollers) as the block enters a loaded area. As a result, fluctuation of the rolling resistance is minimized and smooth stable motion is achieved.

Long-term Maintenance-free Operation

Use of the roller cage eliminates friction between rollers and enables the lubricant to be retained in grease pockets formed between adjacent rollers. As the rollers recirculate, the grease pocket serves to provide the adequate amount of lubricant to achieve long-term maintenance-free operation.

Rated Load and Service Life

[N]

[h]

[mm]

Calculating the Service Life

The service life of model SRG is obtained using the following equation.

$$L = \left(\frac{f_t \cdot f_c}{f_w} \cdot \frac{C}{P_c}\right)^{\frac{10}{3}} \times 100$$

- : Nominal life [km] (The total travel distance that 90% of a group of identical LM Guide units independently operating under the same conditions can achieve without showing flaking)
- С : Basic dynamic load rating [N]
- P_c : Calculated load

Γ.

f.

- : Temperature Factor (see General Catalog)
- f : Contact factor (see General Catalog)
- fw : Load Factor (see General Catalog)

L × 10⁶

- Lh : Service life time
- e. : Stroke length
- n₁ : Number of reciprocations per minute [min⁻¹]

Load Rating

Model SRG is capable of receiving loads in all directions: radial, reverse-radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse-radial and lateral directions), and their values are provided in the dimensional table (see P.5).

Equivalent Load

When the LM block of model SRG receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

	 Reverse radial direction 	
	 Lateral direction 	
PR	:Radial load	[N]
P⊾	:Reverse radial load	[N]
Pτ	:Lateral load	[N]

Equivalent moment factor

If a moment load is applied when a single LM block is used, or two LM blocks are used in close contact with each other, convert the moment load to an equivalent load by multiplying the moment load with the moment equivalent factor indicated in Table 1. See the General Catalog - Technical Descriptions of the Products for details.

$= \mathbf{K} \cdot \mathbf{M}$

Ρ	:Equivalent load per LM Guide	[N]
Κ	:Equivalent moment factor	(see table 1)
Μ	:Applied moment	[N-mm]

Table 1 Equivalent moment factor

Madal Na		Equivalent factor													
Model No.	K _{AR1}	K _{AL1}	KAR2	K _{AL2}	Кв1	K _{B2}	Kcr	Kcl							
SRG 85LC	C 2.19×10 ⁻²		4.15	×10 ⁻³	2.19×10 ⁻²	4.15×10 ⁻³	1.91×10 ⁻²								
SRG100LC	1.95	×10 ⁻²	3.67	×10 ⁻³	1.95×10 ⁻²	3.67×10 ⁻³	1.62	×10 ⁻²							

KAR1 : Equivalent factor in the MA radial direction when one LM block is used

KAL1 : Equivalent factor in the MA reverse radial direction when one LM block is used

KAB2 : Equivalent factor in the MA radial direction when two LM blocks are used in close contact with each other

KAL2 : Equivalent factor in the MA reverse radial direction when two LM blocks are used in close contact with each other

KB1 : Equivalent factor in the MB radial direction when one LM block is used

KB2 : Equivalent factor in the MB radial direction when two LM blocks are used in close contact with each other

KCR : MC Equivalent factor in the radial direction

KcL : MC Equivalent factor in the reverse radial direction

Accuracy Standards

For the accuracy of model SRG, running parallelism, dimensional tolerance in height and width, and difference in height and width required when multiple LM blocks are used on one rail or multiple rails are used on the same plane, are defined as indicated in the table below.

Running of parallelism

See the General Catalog for details.

- Difference in height M
- See the General Catalog for details. **Difference in Width W**₂

See the General Catalog for details.

				Unit:mm				
Model No	Accuracy Standards	Precision grade	Super precision grade	Ultra precision grade				
MOUELINO.	Item	Р	SP	UP				
	Dimensional tolerance	0	0	0				
	in height M	-0.05	-0.04	-0.03				
	Difference in height M	0.01	0.007	0.005				
	Dimensional tolerance	0	0	0				
85	in width W ₂	-0.05	-0.04	-0.03				
100	Difference in width W ₂	0.01	0.007	0.005				
	Running parallelism of surface C against surface A	as shown in the table below						
	Running parallelism of surface D against surface B	é	v					

LM Rail Length and Running Parallelism for Model SRG

Unit: um

				Ontegan				
LM rail ler	ngth (mm)	Running Parallelism Values						
Abovo	Orloss	Precision grade	Super precision grade	Ultra precision grade UP				
ADOVE	01 1635	Р	SP					
1250	1600	8	5	4				
1600	2000	8.5	5.5	4.5				
2000	2500	9.5	6	5				
2500	3150	11	6.5	5.5				
3150	4000	12	7.5	6				
4000	5000	13	8.5	6.5				
Note: For the running pa	rallelism with the I M rail	length exceeding the maximu	m value contact THK					

Radial clearance

The table below shows the radial clearance of model SRG.

			υπι.μπ			
Indication symbol	Normal	Light preload	Medium preload			
Model No.	No Symbol	C1	C0			
SRG 85LC	- 3 to - 1	- 7 to - 3	- 12 to - 7			
SRG100LC	- 3 to - 1	- 8 to - 3	- 13 to - 8			

Note: If desiring normal clearance, add no symbol; for Light or Medium preload, indicate "C1" or "C0" in the model number. See the example of model number coding (see P.5) for details.

Shoulder Height of the Mounting Base and the Shape of the Corner

For the shoulder height of the mounting base for the LM block and the LM rail, we recommend using the value indicated in the table below. For the corner of the mounting base, secure a recess, or machine the corner to have a radius at or below the r1 or r2 value shown in the table below, so that the corner will not interfere with the chamfers of the LM block and the LM rail.

Shoulder for the LM block

Shoulder for the LM rail

Unit:mm

					Official
Model No.	Corner radius (Shoulder for the LM rail) r1 (Max.)	Corner radius (Shoulder for the LM block) r ₂ (Max.)	Shoulder height (Shoulder for the LM rail) H1	Shoulder height (Shoulder for the LM block) H ₂	H₃
SRG 85LC	1.5	1.5	12	14	16
SRG100LC	2	2	12	16	16

Model SRG is highly rigid since it uses rollers as its rolling elements, and the roller cage prevents the rollers from skewing (tilt). However, the mounting surface needs to be machined with high accuracy. If the error on the mounting surface is high, it will affect the rolling resistance and the service life. Therefore, for the accuracy of the mounting surface, do not exceed the maximum permissible value (limit value) that corresponds to the radial clearance indicated in the table below.

Error Allowance in Parallelism (P) between Two Rails											
Radial clearance	Normal	C1	C0								
SRG 85LC	0.040	0.027	0.021								
SRG100LC	0.045	0.031	0.024								

Error Allowance in Level (X) between the Rails												
Radial clearance	Normal	C1	CO									
Permissible error on the mounting surface X	0.00030a	0.00021a	0.00011a									
$X=X_1+X_2$ X ₁ : Level difference on the ratio X_2 : Level difference on the b	ail mounting surface lock mounting surface		X2									
Example of Calculation When the rail span : a=500mm Permissible error on the mountin	ng surface X =0.0003×500 =0.15											
	Error Allowance in Level	(Y) in the Axial Direction	Linit:mm									

Standard Length and Maximum Length of the LM Rail

The table below shows the standard lengths and the maximum lengths of model SRG variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. For the G dimension when a special length is required, we recommend selecting the

corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

If desiring connected use of this model, be sure to specify the overall length in terms of total length when placing an order so that we can manufacture the LM rail without leaving a level difference in the joint.

	SRG 85LC	SRG 100LC							
	1530	1340							
Standard langth (L)	1890	1760							
	2250	2180							
	2610	2600							
Standard pitch	90	105							
G	45	40							
Max length	3000	3000							

Standard Length and Maximum Length of the LM Rail for Model SRG

Note 1: The maximum length varies with accuracy grades. Contact THK for details.

Note 2: If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

Linitume

Model SRG-LC Dimensional Table for Model SRG-LC

													0	mumm				
	Outer	[,] dimen	sions					LI	V bloc	k dime	ension	s						
Model No.	Height	Width	Length														Grease	
	М	W	L	В	С	S	Н	L ₁	Т	T ₁	К	Ν	Е	e _o	f _o	D_0	Nipple	H₃
SRG 85LC	110	215	350	185	140	M20	17.8	250.8	30	35	94	22	16	15	22	8.2	B-PT1/8	16
SRG 100LC	120	250	395	220	200	M20	17.8	280.2	35	38	104	23	16	15	23	8.2	B-PT1/4	16

	LM rail dimensions							ad rating	Static permissible moment [kN-m]*3					Mass			
Model No.	Width					Maximum	С	C ₀	MA		M _B		Мв 🔒		Mc 💮	LM block	LM rail
	W ₁ ⁰ .0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	length*2	[kN]	[kN]	1 block	Double casings	1 block	Double casings	1 block	[kg]	[kg/m]		
SRG 85LC	85	65	71	90	24×35×28	3000	497	990	45.3	239	45.3	239	51.9	26.2	35.7		
SRG 100LC	100	75	77	105	26×39×32	3000	601	1170	60	319	60	319	72.3	37.6	46.8		

Note *1: The pilot hole for the side nipple is not drilled through in order to prevent foreign material from entering the LM block. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes for purposes other than mounting a grease nipple.

*2: The maximum length indicates the standard maximum length of an LM rail.

*3: Static permissible moment One block: static permissible moment value with one LM block

Double blocks : static permissible moment value with double block closely contacting with each other

Note: The removing/mounting jig is not included in the package as standard. If you desire to use it, contact THK.

Model Number Coding

Note This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.) Those models equipped with QZ Lubricator cannot have a grease nipple.

Unit:mm

Maximum Seal Resistance /Contamination protection accessory

Table 2 shows the maximum seal resistance value per LM block with the SRG...SS seal.

Unit:N						
Model No.	Maximum Seal Resistance*					
SRG 85LC	47					
SRG100LC	53					

Table 2 Maximum Seal Resistance

* The maximum seal resistance value with lubricant applied.

Overall LM block length after a contamination protection accessory is attached.

Model No.	UU	SS	DD	ZZ	KK
SRG 85LC	350	350	361.2	365.2	376.4
SRG100LC	395	395	406.2	411	422.2

Note 1: For details of contamination protection accessories, see the General Catalog. Note 2: For model SRG, the SS type is available as standard. Note 3: If you desire QZ or LaCS, contact THK.

Dedicated Bellows JSRG for Model SRG

The table below shows the dimensions of dedicated bellows JSRG for model SRG. Specify the corresponding model number of the desired bellows from the table.

	Main dimensions [mm]								
Model No.									
	W	Н	H ₁	Р	р	b1	t1	b ₂	t ₂
JSRG 85LC	168	91	91	35.5	30	120	15	30	55
JSRG100LC	198	100	100	43	33	152	13.3	36	60

	M	ain dimen	Extension rate A	Supported		
Model No.	Screw size	Mounting bolt			/Lmax	model
	S	S1	а	b	Lmin	numbers
JSRG 85LC	M6	M6×8L	3	23.5	9	SRG 85LC
JSRG100LC	M6	M6×8L	4	26	9	SRG100LC

Model Number Coding

Note: The length of the bellows is calculated as follow.

S

JSRG85 - 60 / 300

Model No.

Dimensions of the bellows (length when compressed / length when extended)

 $Lmin = \frac{C}{(A-1)}$ Lmax=Lmin ·A A:Extension rate

S:Stroke length (mm)

Unit:mm

Dedicated C-Cap for LM Rail Mounting Holes

If any of the LM rail mounting holes of an LM Guide is filled with cutting chips or foreign material, they may enter the LM block. Entrance of such foreign material can be prevented by covering each LM rail mounting hole with the dedicated cap to eliminate the level difference between all the hole tops and the top face of the LM rail.

Model No.	Madal Na	Daltward	Main dimensions [mm]		
	woder no.	boit used	D	Н	
SRG 85LC	C22	M22	35.5	5.7	
SRG 100LC	C24	M24	39.5	7.7	

Major dimensions of the C-Cap

Greasing hole

Model SRG allows lubrication from both the side and top faces of the LM block. The greasing hole of standard types is not drilled through in order to prevent foreign matter from entering the LM block. When using the greasing hole, contact THK.

Mounting dimensions of the greasing holes

Model No	Pilot hole for side nipple			Applicable	Greasing hole on the top face		
would no.	e _o	f _o	Do	nipple	D ₂ (O-ring)	V	e1
SRG 85LC	15	22	8.2	PT1/8	13 (P10)	0.4	10
SRG 100LC	15	23	8.2	PT1/4	13 (P10)	0.4	10

Dedicated Bellows JSRG for Model SRG

- Note 1: For lubrication when using the dedicated bellows, contact THK.
- Note 2: If you desire to use the dedicated bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or desire a heatresistant type of bellows, contact THK.

Dedicated C-Cap for LM Rail Mounting Holes

